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Abstract
Liquid foams can behave like solids or liquids, depending on the applied
stress and on the experimental timescale. Understanding the origin of this
complex rheology which gives rise to many applications and which resembles
that of many other forms of soft condensed matter made of closely packed
soft units requires challenging theoretical questions to be solved. We briefly
recall the basic physics and physicochemistry of foams and review the
experiments, numerical simulations and theoretical models concerning foam
rheology published in recent years.
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1. Why study foam rheology?

Liquid foams are concentrated dispersions of gas bubbles in a surfactant solution. Although
they are constituted only of fluids, their mechanical properties can be either solid-like or liquid-
like (Weaire and Hutzler 1999), depending on the applied stress, as illustrated in figure 1.
The elasticity of liquid foams arises because a small applied stress increases the gas–liquid
interfacial area and thus the energy per unit volume, as shown by Derjaguin and later by
Princen in their pioneering work (Derjaguin 1933, Princen and Kiss 1986). If the applied
stress is increased beyond the yield stress, it triggers irreversible bubble rearrangements and
foam flows like a viscous non-Newtonian fluid.

The uncommon mechanical behaviour of foams combined with their low density and their
large specific surface area give rise to a large variety of industrial applications (Khan and
Prud’homme 1996). For instance, in the widely used process called flotation, liquid foams
are employed to separate minerals from extracted ore. Foams are used as drilling fluids in oil
production, and as fire fighting agents for polar solvent and oil fires. They are also valued
as a galenic form of medical drugs that can enhance efficiency. In everyday life, they are
encountered in many food products and cosmetics. In all of these applications, the foam
rheology must be tuned to meet the requirements of the products or processes. To achieve
this aim, a fundamental understanding of the underlying physics and physical chemistry is
necessary.

Foams present characteristic structures on length scales ranging from macroscopic to
molecular. We will show in this review that physical models of foam rheology can involve
interplay between processes at all of these length scales. The difficulty of formulating such
models raises the question of the level of coarse-graining necessary to allow maximum physical
insight with minimal complexity. Schematically, foams may be described as disordered and
metastable packings of small soft units. In this respect, they resemble other complex fluids
such as concentrated emulsions (often called biliquid foams), soft pastes, particulate gels and
even lyotropic multilamellar vesicles. All of these fluids present slow mechanical relaxations
reminiscent of the behaviour of glassy materials, jamming and yielding at the crossover between
solid-like and liquid-like behaviours, and coupling between ageing and dynamics. Therefore,
the question arises of whether some aspects of this behaviour may be due to generic mechanisms
acting on a mesoscopic length scale where the details of the physicochemical constitution do
not matter. It has been conjectured that such mechanisms may govern a whole class of ‘soft
glassy materials’ (Cates 2002, Sollich et al 1997). The differences between the intrinsic
dynamics at the bubble, droplet or particle scale set a limit of such a ‘universal’ approach. In
contrast to some emulsions and colloidal suspensions, the typical bubble radius in foams is
far too large for thermal dynamics to be relevant. Nevertheless, foams do have an intrinsic
source of dynamics since their structure evolves with time due to the effects of liquid drainage,
bubble coalescence and interbubble gas diffusion. More detailed models of foam rheology
describe bubbles as interacting spheres with elastic repulsion and viscous friction between
first neighbours (Durian 1995, 1997). In this framework, sheared foam could be reminiscent
of a supercooled liquid (Langer and Liu 2000). Finally, the equilibrium structure of foam
minimizes the interfacial area for given bubble volumes. This simple and powerful principle
allows very accurate simulations of quasistatic foam rheology, providing the link between
behaviours at the macroscopic and the gas–liquid interface scales (Reinelt and Kraynik 2000,
Weaire and Hutzler 1999).

The origin of the rheological behaviour of foam has been the subject of many recent
experiments, numerical simulations as well as theoretical studies, and an understanding of
the local physicochemical processes and properties that govern the macroscopic rheology is
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beginning to emerge. In the present topical review, we first recall basic concepts concerning
foam structure, ageing and rheology. We then focus on linear and non-linear viscoelasticity
and its interplay with ageing. Finally, yielding and liquid-like response are discussed.

2. Basic concepts, models and methods

2.1. Structure and ageing

On the macroscopic scale, foams appear to be homogeneous and may be characterized by their
gas volume fraction, denoted as φ. A closer look reveals a packing of bubbles whose size is
typically in the range 10 µm–1 cm. The thickness of the liquid films separating neighbouring
bubbles is generally between 10 nm and a few µm. To prevent film rupture, the gas–liquid
interfaces must be covered by surfactant molecules. In equilibrium, the pressure in the liquid
is determined by the laws of hydrostatics, and the gas pressures in the bubbles differ from this
due to capillary and disjoining pressures. Capillary pressure is by definition the difference in
pressure between two contiguous gas and liquid phases, due to surface tension (Levich 1962).
As described by Laplace’s law, it varies linearly with the surface tension and mean interfacial
curvature (Adamson 1990). Disjoining pressure in thin films results from intermolecular
interactions, whose range does not exceed about 102 nm: van der Waals forces, electrostatic
repulsions arising from the electrical double layers at the interfaces and steric interactions.
Let us first consider foams whose liquid content is sufficiently small for the bubbles to have
an approximately polyhedral shape as illustrated in figure 2(A). The bubble edges in such
dry foams are called Plateau borders; the junctions of Plateau borders constitute vertices.
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The structures of real foams are generally disordered, but not totally random: Plateau’s rules
state that for 3D foams in the dry limit and under equilibrium conditions three films must join at
each Plateau border at mutual angles of 120◦, and four Plateau borders must form tetrahedral
symmetric vertices (Weaire and Hutzler 1999). Edges and vertices of valence higher than
those given by these rules are mechanically unstable and dissociate into stable ones1. The
topological statistics of dry random foams and their geometric properties related to surface
area, edge length and stress have been evaluated by extensive computer simulations (Kraynik
et al 2003, 2004). If more and more liquid is added to a dry 3D foam, the bubble shapes become
approximately spherical (cf figure 2(B)). Such wet foams can have gas volume fractions down
to a characteristic value close to 64% where their structure resembles a random close packing
of spheres. At even lower gas volume fractions, foam loses its rigidity and behaves as a
bubbly liquid.

Foams are intrinsically unstable and their structure evolves with time due to drainage, film
rupture and gas diffusion across the films separating neighbouring bubbles. On a local scale,
drainage corresponds to the liquid flow through films, Plateau borders and vertices. The first of
these contributions consists in a thinning of the films driven by gravity and capillary suction and
limited by the disjoining pressure (Bhakta and Ruckenstein 1997). The latter two contributions
have been described theoretically by effective medium models where the liquid is assumed to
flow as in a porous medium with the Plateau borders behaving as deformable pores (Verbist
et al 1996, Neethling et al 2002, Saint-Jalmes et al 2000). This flow is driven by gravity and
capillary forces, due to the curvature of the Plateau border interfaces, and it stops when the
gradient of the capillary pressure balances gravity (Weaire and Hutzler 1999). To provide
an accurate description, the viscous dissipation in both the Plateau borders and the vertices
has been taken into account (Durand and Langevin 2002, Koehler et al 2000). Moreover,
the flow boundary conditions at the gas–liquid interfaces, which depend on the surfactants
used, need to be considered (Langevin 2000). A detailed discussion of this very active field
of research is beyond the scope of the present review. Ultimately, when films become very
thin, they rupture, leading to bubble coalescence. This process is strongly coupled to drainage
(Bhakta and Ruckenstein 1997), and arises when the gas volume fraction increases above a
threshold value depending on the surfactant and its concentration (Carrier and Colin 2003).
It has been studied in a series of acoustic or conductivity experiments (Müller and Di Meglio
1999, Vandewalle and Lentz 2001, Carrier and Colin 2003).

Laplace pressure differences between neighbouring bubbles drive gas diffusion through
the liquid films, so that larger bubbles grow at the expense of smaller ones: the foam coarsens.
This leads to a build-up of local strain modifying the length of the bubble edges. When
an edge length goes to zero, an unstable configuration is obtained and neighbour switching
occurs. Such elementary topological changes, called T1 processes and illustrated in figure 3,
can occur independently or as avalanches (Weaire and Hutzler 1999). They not only occur as
a result of coarsening, but may also be induced by applying macroscopic strain. Individual
T1 bubble rearrangements correspond in 2D to the dissociation of a fourfold vertex into two
stable threefold vertices. T1 processes in 3D are more complex; a discussion can be found in
the literature (Weaire and Fortes 1994, Reinelt and Kraynik 2000). A bubble vanishes when
all of its gas has been transferred to its neighbours. Such topological changes are called T2
processes (cf figure 3). In the absence of significant drainage and coalescence, coarsening
leads asymptotically to a scaling state where the bubble growth is statistically self-similar: the
distribution of bubble sizes, normalized by their average value, becomes independent of time

1 For foams of finite liquid content, it has been predicted that eightfold vertices can be metastable (Weaire and Phelan
1996).
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Figure 3. Illustration of T1 and T2 processes in dry 2D
foam. Two bubbles that are initially separate and that become
neighbours as a consequence of the T1 event are marked in
grey. The same shade is used to distinguish a bubble that
disappears upon a T2 event.

as well as initial conditions. A mean field argument based on statistical self-similarity predicts
for 3D as well as 2D foams that the average bubble radius, denoted as R1, increases with age
t following a parabolic law (Mullins 1986):

R2
1(t) − R2

1(t0) = K (t − t0). (1)

The constant K has the dimension of a diffusion coefficient and depends on the permeability
of the individual liquid films, governed by their thickness as well as the solubility and the
diffusion coefficient of the gas in the liquid (Princen and Mason 1965). Moreover, it has been
shown that K is an increasing function of gas volume fraction (Vera and Durian 2002). The
bubble growth law equation (1) has been verified experimentally in 2D (Glazier and Weaire
1992) and in 3D (Durian et al 1991, Hoballah et al 1997). As a consequence of statistical
self-similarity, there is only one independent characteristic length scale describing the foam
structure, which can be chosen as R1. The temporal evolution of any mth moment of the
bubble radius distribution, denoted as Rm(t), is therefore proportional to that of R1 taken to
the mth power (Hoballah et al 1997). Depending on their characteristic timescales, drainage
and coarsening may be coupled and mutually accelerate (Hilgenfeldt et al 2001a, Hutzler and
Weaire 2000, Saint-Jalmes and Langevin 2002, Vera and Durian 2002). Note that drainage,
coalescence and coarsening also exist in emulsions, but since the preponderant process is
determined by the differences in density and solubility between the dispersed and continuous
phases, the ageing dynamics of foams and emulsions can differ significantly.

2.2. Rheology

Measures of stress and strain. On a macroscopic scale, foam may be viewed as a continuum,
and the stress tensor is a well defined quantity. However, the continuum picture breaks down
on the bubble scale. In steadily flowing foam, a local stress can be obtained by performing a
temporal average over the pressure and interfacial tension forces acting on a surface element
(or a line element in 2D foam) of fixed position (Asipauskas et al 2003). A general expression
for the local interfacial and gas pressure contributions to the macroscopic stress σ has been
proposed by Bachelor (1970):

σi j = − 1

NV

N∑

k=1

(pk Vk)δi j +
T

NV

∫ ∫
(δi j − ni n j ) dS (2)

pk and Vk are respectively the gas pressure and volume of bubble number k, N is the total
number of bubbles, V is the average bubble volume, T the interfacial tension and n a unit
vector normal to the interface. The integration is carried out over all interfaces in the volume.
Both faces of each soap film have to be taken into account. Equation (2) is extensively used
in numerical simulations and analytical models.
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Figure 4. 2D foam structures obtained by applying an increasing shear strain as indicated. A T1
process occurs as bubbles marked 2 and 3 separate and the topology changes.

Strain can be defined on the macroscopic scale by comparing the previous and present
positions of each volume element, denoted as x′ and x respectively. Only if very small strains
and linear rheology are considered is the infinitesimal strain tensor ε adequate for describing
the deformation. To study non-linear effects, the deformation gradient tensor F, the Finger
strain tensor B or the right Cauchy–Green tensor C must be used (Macosko 1994, Mal and
Singh 1991):

F = ∂x
∂x′ ; B = FFT; C = FTF; ε = 1

2 (F + FT) − I. (3)

I is the unit tensor. As in the case of stress, a continuous tensor field is inadequate for
describing strain on the bubble scale: even if the macroscopic strain is homogeneous, the
deformation of individual bubbles is generally non-affine, corresponding to a deformation
gradient which varies strongly over small distances. The local deformation in foam may
be described statistically by viewing the interfaces as an ensemble of small flat elements,
characterized by their area and a normal vector n (Doi and Ohta 1991). A distribution function
f (n) is introduced such that the area of surface elements per unit volume whose normal lies
within a solid angle d� around n is f (n) d�. This description of strain is used in the models of
non-linear foam rheology presented in section 3.2. Moreover, the statistical properties of the
distribution f (n) have recently been discussed in relation to equation (2) (Fortes et al 2002).
As an alternative statistical measure of strain in dry foams, a texture tensor M = 〈� ⊗ �〉 has
been proposed, where � is a vector going from one vertex to a neighbouring vertex and the
angular brackets represent an average over a region in the foam. From M, a ‘statistical strain
tensor’ has been derived which reduces for small deformations to the average infinitesimal
strain tensor (Aubouy et al 2003).

Basic rheology of ordered foams. Even though perfect bubble ‘crystals’ are rare in nature,
such systems are useful for studying theoretically basic mechanisms of foam rheology on the
bubble scale. Pioneering work in this field was focused on dry 2D foam whose bubbles are
hexagonal in the absence of stress (Khan and Armstrong 1986, Princen 1983). When such
foam is subjected to a small quasistatic shear strain, vertices move in a non-affine way since
Plateau’s rules must be respected (cf figure 4). The total edge length per unit cell which
determines the elastic energy density increases to a good approximation quadratically with
strain, corresponding to linear elastic response.

A critical configuration is reached at the yield strain 2/
√

3 where the length of the edge
separating bubbles marked 2 and 3 in figure 4 shrinks to zero (Princen 1983). Further increase
of strain induces a topological rearrangement, called a T1 process (cf section 2.1). From here
on, foam will not return elastically to its initial configuration if stress is relaxed to zero, but it
will settle into a new equilibrium, corresponding to a structure with permanent plastic strain.
The yield stress is defined as the stress required to induce such rearrangements, corresponding
to the onset of liquid-like rather than elastic response (Larson 1999). Extensive studies of the
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rheology of polydispersed ordered 2D foams as well as of 3D ordered foams can be found in
the literature (Kraynik and Reinelt 1996, Reinelt and Kraynik 1993, 2000).

Mesoscopic models. Disordered packings of small soft units, such as foams, concentrated
emulsions and soft pastes show strikingly similar rheological behaviour. This observation
has prompted several authors to conjecture that the macroscopic response can be explained
in terms of generic physical mechanisms. For a recent review, see Barrat et al (2003). One
approach consists in considering the material on a mesoscopic length scale, large enough for
continuum mechanics concepts such as stress, strain and yield strain to be well defined and
small enough that spatial variations of these quantities can be resolved. In the soft glassy
rheology models, all mesoscopic regions are supposed to present a linear elastic response up
to a maximum local elastic energy E , randomly chosen from a distribution ρ(E) (Sollich
1998, Sollich et al 1997). The macroscopic stress is taken to be the average of the mesoscopic
stresses and the time evolution of each mesoscopic strain follows the evolution of the imposed
macroscopic strain as long as there are no rearrangements. If the local elastic energy exceeds
E , a structural rearrangement occurs, all the elastic energy is dissipated and a new value
of E is chosen. Rearrangements may also be activated by strain fluctuations, represented
in a mean field approach by an effective noise temperature ζ . It has been shown that the
choice ρ(E) ∝ exp[−E/ζ ] with a specific value for ζ leads to a rheological constitutive
equation that qualitatively describes many features of the behaviour observed for soft pastes,
emulsions and foams. This form of ρ(E) had previously been proposed to describe glassy
behaviour (Bouchaud 1992). Another group of models are based on a scalar measure of the
‘degree of jamming’, determined by two opposing tendencies: local flow breaks up the jammed
structure, speeds up the dynamics and reduces the viscosity. Conversely, ageing re-establishes
the jammed structure and thereby enhances the viscosity. This is expressed in terms of non-
linear differential equations that reproduce at least qualitatively much of the experimentally
observed phenomenology (Coussot et al 2002a, Derec et al 2001, Picard et al 2002). Let us
finally note that a mode coupling approach has also been used to derive a generic model of
complex yield stress fluids (Hébraud and Lequeux 1998). Even though foams and emulsions
are often cited as possible examples of real materials described by the models outlined here,
the link with the known physics at the bubble or droplet scale has not yet been established.

Numerical simulation techniques. Four principal techniques have been used to simulate
foam rheology and ageing. The first is based on the principle that in static equilibrium, foam
has a structure of minimal interfacial energy and thus minimal interfacial area. The Surface
Evolver software allows one to determine the structure of minimal energy numerically, for
given boundary conditions, such as walls confining the foam (Brakke 1992). Each interface is
discretized into finite elements and this meshing is refined according to the required accuracy.
By applying step by step small changes of the boundary conditions, quasistatic experiments
such as shearing ones can be simulated, as illustrated in figure 5. For isochoric macroscopic
strains, the volume of each bubble is kept constant upon minimization since the capillary
pressure is generally many orders of magnitude too small to compress the gas significantly. The
principal strength of Surface Evolver simulations is their accuracy; their main shortcomings
are the restriction to the quasistatic regime and the very large amount of computer memory
and time required to simulate large structures, especially in 3D.

The following three models resolve these two difficulties by means of simplified
descriptions of foam structure, dynamics and dissipation. The gain of computational efficiency
is obtained at the expense of realism and possible artefacts that need to be checked for. In the
vertex model, the foam structure is described only in terms of the positions of the vertices.
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Figure 5. Two samples of dry random monodisperse 3D foam, obtained by a Surface Evolver
simulation with periodic boundary conditions. The structure on the left is not strained whereas the
one on the right is subjected to a simple shear of magnitude 1.4. (Figure provided by A Kraynik.)

In this framework, foam dynamics is described by approximate equations of motion for the
vertices, taking into account dissipation in the liquid films (Okuzono et al 1993). The Potts
model was first used to study coarsening of grains in polycrystals (Grest et al 1988) and then
that of bubbles in aqueous foams (Glazier et al 1990). It uses a discrete space in which
spin-like variables distinguish the regions of the sample occupied by each grain or bubble.
Simple spin dynamics allows coarsening to be simulated. This simulation technique was later
refined to describe shearing and viscous dissipation (Jiang et al 1999). In the ‘bubble model’,
the foam structure is described by the central position and radius of each bubble (Durian
1995, 1997). Dissipation has been described in this framework either as a friction between
neighbouring bubbles proportional to their relative speed or, in a mean field approach, as
a friction proportional to the bubble speed relative to the average speed of the neighbours.
Moreover, neighbouring bubbles interact via a repulsive harmonic potential if the distance
between their centres is smaller than the sum of their respective radii. Numerical simulations
using the Surface Evolver as well as analytical arguments have shown that in 2D, elastic
interactions between bubbles can indeed be described to a good approximation by a pairwise
harmonic potential whose range is set by the sum of the bubble radii (Lacasse et al 1996).
However, in 3D, the interaction is anharmonic and non-local: its characteristics depend on the
number of neighbours in contact with the interacting pair of bubbles (Lacasse et al 1996, Morse
and Witten 1993). On the basis of interaction potentials taking into account these effects, 3D
bubble model simulations of flowing foams have been carried out (Gardiner et al 2000).

Experimental techniques. Foams can be studied using the standard methods of rheometry
(Macosko 1994), but several specific points have to be kept in mind. Wall slip may occur at
the contact of the foam and the surfaces of the cylinders, cones or plates of the rheometer.
The study of bubbles slipping on a wetted solid surface goes back to the work of Bretherton
(1961), but extending these results to wall slip of 2D or 3D foams requires a more specific
analysis (Cantat et al 2004, Denkov et al 2005). Various procedures in rheometry have been
proposed to correct for wall slip, in particular in the context of pipe viscosimetry (Calvert 1990,
Enzendorfer et al 1995, Gardiner et al 1998a, Herzhaft et al 2005), a vast subject which we
will not discuss in detail here. In most recent rheological studies using cone–plate, plate–plate
or Couette rheometers, wall slip has been eliminated by roughening the surfaces in contact
with the sample. Another intrinsic difficulty of foam rheometry is that the sample structure
continuously evolves due to the mechanisms reviewed in section 2.1. Slow rheological response
is therefore intrinsically coupled to ageing. This may explain why most reported measurements
focus on very stable foams.
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Figure 6. Storage and loss moduli G ′ and G ′′ of Gillette shaving cream (φ = 92.6%) plotted
versus frequency. These samples that evolve on the experimental timescale only due to coarsening
are subjected to a sinusoidal shear stress of amplitude much smaller than the yield stress. The
symbols correspond to different foam ages: (◦) 15 min, (�) 30 min, (♦) 1 h, (×) 2 h, (+) 4 h,
(�) 8 h. (Reprinted figure, with permission from Cohen-Addad et al (1998), Copyright 1998 by
the American Physical Society.)

3. Solid-like response

3.1. Linear viscoelasticity

Comparison with other complex fluids and the existence of a linear viscoelastic regime. The
linear viscoelastic response observed for foams is in many respects similar to that of other
disordered close packings of small soft units, such as concentrated emulsions and soft pastes.
The complex shear modulus G∗(ω) = G ′(ω) + iG ′′(ω) behaves in a regime of high angular
frequency ω as if a viscoelastic contribution proportional to (iω)1/2 were superposed on
a constant purely elastic shear modulus. Indeed, G ′′ presents an increase with frequency
proportional to ω1/2 that can be clearly distinguished at frequencies typically above 1–10 Hz.
The increase of G ′ with frequency becomes significant compared to the static elasticity only
at much higher frequencies. This behaviour is observed for concentrated emulsions (Hébraud
et al 2000, Liu et al 1996), wet foams (Cohen-Addad et al 1998, Gopal and Durian 2003) and
pastes (Derec et al 2003). At low frequency, an extended plateau of G ′(ω) has been observed
in all of the above-mentioned materials. G ′′(ω) also presents a plateau, but its extent as well
as the ratio G ′/G ′′ depend on physicochemical properties (Labiausse 2004) and foam age
(Cohen-Addad et al 1998), as illustrated in figure 6. It has been pointed out that even minute
strains might trigger irreversible structural changes in foams which would be incompatible
with a strictly linear response (Weaire and Fortes 1994). However, in oscillatory experiments,
the observed dependence of G ′ and G ′′ on the strain amplitude for small amplitudes is weak,
suggesting a linear response. Furthermore, the sample volume fraction where bubble motion
is strictly periodic in sinusoidally sheared foam has been monitored using diffusing-wave
spectroscopy echoes (Höhler et al 1997), an optical technique based on multiple scattering of
coherent light. In the range of strain amplitudes where the measured rheological response is
linear, no strain induced bubble rearrangements were detected (Höhler et al 1997, Labiausse
2004). Finally, if the viscoelastic response is linear, the frequency dependent complex shear
modulus must be related via a Fourier transform to the stress response measured as a function
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of time after the application of a step strain (Ferry 1980). This prediction has been confirmed
experimentally for wet foams (Gopal and Durian 2003). These observations clearly establish
the existence of a well defined linear viscoelastic regime.

Linear elasticity. When a small constant macroscopic shear stress is applied to a foam sample,
the bubbles are deformed and thus their surface area and interfacial energy increase, giving
rise to an elastic strain. Under static conditions, this linear elastic behaviour is described by
an elastic shear modulus denoted as G0, corresponding approximately to the plateau of G ′(ω)

shown in figure 6. In early experiments on emulsions, G0 was found to be proportional to
the interfacial tension T and to the inverse of the Sauter mean bubble radius R32 ≡ R3/R2

which is a measure of the amount of interfacial area per unit volume (Princen and Kiss
1986). In numerical simulations of 3D dry random monodispersed and polydispersed foam,
G0 = 0.51T/R32 has been obtained (Kraynik and Reinelt 2004, Kraynik et al 2000), in
agreement with an approximate theoretical prediction (Stamenovic 1991). These results
are consistent with previously computed shear moduli of ordered 3D dry foams if isotropic
averaging is applied (Kraynik and Reinelt 1996, Reinelt and Kraynik 2000). Quantitative
comparison with experimental data is non-trivial, since in response to a step stress, real foams
slowly creep and do not settle into a truly static equilibrium, as will be explained below.
Another difficulty is the experimental determination of the bubble size distributions in foams.
It is generally estimated from observations of the sample surface, making it hard to determine
bulk averages such as R1 or R32 accurately. Moreover, many authors only report the mean
radius R1 which is only in the case of monodispersed samples equal to the Sauter mean radius,
needed for a quantitative discussion of elasticity. Finally, extrapolation of the shear modulus to
the dry limit is non-trivial: a recent theoretical analysis of very dry foam predicts a contribution
to the shear modulus, scaling as the square root of the liquid fraction (Kern and Weaire 2003).
With these words of caution in mind, we note that a linear extrapolation to the dry limit of the
data shown in figure 7 for monodispersed emulsions (Mason et al 1995) and polydispersed
emulsions (Princen and Kiss 1986) at low frequencies or long experimental timescales agrees
approximately with the prediction G0 = 0.5T/R32. Moreover, experiments using foams
(Saint-Jalmes and Durian 1999) and emulsions (Mason et al 1995) with a wide range of volume
fractions of the dispersed phase have shown that the elasticity vanishes at φ = φc

∼= 0.64,
close to the fraction of random close packing of monodisperse hard spheres. This loss of
rigidity at φ = φc has been described theoretically as a percolation phenomenon (Bolton and
Weaire 1990). For φc < φ < 1, G0 obtained from G ′ measurements at low frequencies has
been found to vary as φ(φ − φc) in emulsions (Mason et al 1995) and foams (Saint-Jalmes
and Durian 1999). Mason, Bibette et al have proposed to describe the monodisperse emulsion
data with the following empirical relation (Mason et al 1995) and a dimensionless prefactor
α ∼= 1.6:

G0 = αφ(φ − φc)
T

R1
. (4)

Note that values of α lower than 1.6 were found in several measurements with polydisperse
foams as shown in figure 7. Moreover, equation (4) is consistent with numerical simulations for
polydispersed dry foam cited above if R1 is replaced by R32 and α ∼= 1.4. Additional accurate
experimental work and a better understanding of viscoelastic effects would be of great interest
for making further progress.

Origin of the slow linear viscoelastic response. On the basis of early 2D quasistatic numerical
simulations as well as 3D relaxation modulus measurements, it has been suggested that the
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Figure 7. Static shear modulus G0, normalized by the surface tension T divided by a mean
bubble radius R, versus volume fraction of the dispersed phase φ, for foams and oil in water
emulsions of different polydispersity. For emulsions, φ represents the effective volume fraction
taking into account the thickness of the thin water film due to the screened Coulomb repulsion
between the droplets. Open symbols represent data where R = R32 whereas for lines and full
symbols R = R1: (——) fit to monodisperse emulsion data using equation (4) with α = 1.6
(Mason et al 1995); (– – –) fit to polydisperse foam data using equation (4) with α = 1.4 (Saint-
Jalmes and Durian 1999); (�) polydisperse emulsion (Princen and Kiss 1986); ( ) polydisperse
foam (Khan et al 1988); (�) Gillette foam (Gopal and Durian 1999, 2003); (�,◦) polydisperse
foams and (�) Gillette foam (Cohen-Addad and Höhler 2004); (♦) Surface Evolver simulation of
polydisperse foams (Kraynik and Reinelt 2004).

slow viscoelastic relaxation of foams may be governed by the coarsening process (Weaire
and Kermode 1984, Gopal and Durian 2003). To gain more insight, the long time end of
the linear viscoelastic relaxation spectrum has been probed by means of creep experiments
(Cohen-Addad et al 2004): a stress step much smaller than the yield stress is applied to the
sample and the resulting strain is measured as a function of time. Such data obtained for
wet foams show an initial elastic response, followed by a transient relaxation lasting a few
seconds and finally a steady state flow where strain increases linearly with time (cf figure 8).
The measured creep compliance J (t), defined as the strain γ (t) at time t divided by the fixed
amount of applied stress σ12, is well described by an expression of the form Cohen-Addad
et al (2004):

J (t) ≡ γ (t)

σ12
= J0 +

t

η0
+ J1(1 − exp(−t/(J1η1))) (5)

where the parameters J0, J1, η0 and η1 depend on the physicochemical characteristics of the
foam. Note that J0 = 1/G0. Recent creep experiments on other kinds of surfactant and protein
foams are in full agreement with equation (5) (Marze et al 2005). Thus, in contrast to the large
spectrum of relaxation times predicted by the soft glassy rheology models (cf section 2.2), the
slow relaxations in the foams studied are due to only two processes: steady creep governed
by the characteristic time η0(J0 + J1) and a transient relaxation on the timescale η1 J1. The
link between creep and coarsening has been clarified by rheological measurements coupled in
situ to diffusing-wave spectroscopy investigations of the local bubble dynamics. On the basis
of such data, creep has been explained as a consequence of intermittent local loss of elasticity
upon coarsening induced structural rearrangements on the bubble scale (Cohen-Addad et al
2004). This mechanism has been described by a mesoscopic model relating the characteristic
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Figure 8. (a) Typical shear creep and recovery compliances as a function of time, measured for
a stress applied for 100 s starting at the instant t = 0. The applied stress is far below the yield
stress and the compliances are normalized by the steady state compliance J0 + J1. The different
line styles correspond to three kinds of foams: (- - - -) Gillette foam and two foams produced
using an aqueous solution containing an α-olefine surfactant, polyethylene oxide, dodecanol and
different gases: nitrogen for (– – –) N2 foam and a mixture of nitrogen and perfluorohexane vapour
for (· · · · · ·) N2/C6F14 foam. The inset shows J0 + J1 as a function of the average bubble diameter
divided by surface tension T for the three kinds of foams, together with a linear fit: N2 foam
( ), Gillette foam (•) and N2/C6F14 foam (�). (b) Characteristic time of the steady state creep,
η0(J0 + J1), represented as a function of the average time interval between bubble rearrangements
in a volume (2R1)

3, for foams of widely differing coarsening rates. The line is a linear fit to
the data on Gillette and N2/C6F14 foam with an average effective volume of a relaxed region
vm = (6R1)

3. (Figures modified with permission from Cohen-Addad et al (2004), Copyright 2004
by the American Physical Society.)

time η0(J0 + J1) to r , the number of rearrangements per unit time and volume, and vm , the
effective average volume of the region where the local stress is relaxed upon a rearrangement:
η0(J0 + J1)

∼= (rvm)−1. As shown in figure 8, this prediction is in good agreement with
data for wet foams over a wide range of bubble rearrangement rates. vm is found to be of
the order of (6R1)

3. The transient creep response is characterized by the compliance J1 and
viscosity η1 which have been found experimentally to scale with bubble size as J1 ∝ R1 and
η1 ∝ R−1.2

1 . Among the many mechanisms of dissipation in foams discussed in the literature
(Buzza et al 1995), dilatational surface friction at the gas–liquid interfaces is the only one
compatible with this experimental evidence for η1. It is predicted to give rise to an effective
zero-shear foam viscosity of the order of κ/R1 where κ is the dilatational surface viscosity.
The elasticity described by the compliance J1 can be associated with the following mode of
structural relaxation: the abrupt bubble deformation upon the applied stress step is governed
by viscous forces and therefore gives rise to a foam structure which is not of minimal interfacial
energy. As time progresses, surface tension forces become dominant and the structure relaxes
towards an equilibrium with minimal interfacial energy. A rough estimate of the characteristic
time of this relaxation has been obtained from a 2D hexagonal foam model, using an approach
similar to that of Kraynik and Hansen (1987) with a modified tensile force acting on a film of
length L given by 2T + (2κ/L)(∂L/∂ t) (Edwards et al 1991). The predicted relaxation time
scales as κ/T with a prefactor of the order of 1. For this to be consistent with the experimentally
measured value of the characteristic relaxation time η1 J1, κ must be of the order of 0.1 kg s−1

for the foaming solutions used in the experiments (Cohen-Addad et al 2004). This is in rough
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agreement with dilatational surface viscosities reported for similar mixtures of sodium lauryl
sulfate and dodecanol (Djabbarah and Wasan 1982).

To summarize, we note that the slow linear viscoelastic behaviour of wet foams strongly
depends on the physicochemical properties of the liquid films. This response is described
by equation (5) which may be represented by an association in series of a Maxwell element
and a Voigt element. The former describes coarsening induced bubble rearrangements and
the latter results from a structural relaxation mode, involving interfacial dilatational friction of
the interfaces. Indeed, the dilatational viscous stress is not simply additive to elastic stress as
pointed out previously (Hemar et al 1995).

Fast viscoelastic response. As mentioned in the introduction of this section,wet foams behave
at sufficiently high frequencies as if a term proportional to (iω)1/2 were superposed on their
low frequency complex shear modulus. As a possible origin of this fast viscoelastic response,
one may consider the relaxation of individual bubbles, represented schematically as a spring
whose modulus scales as T/R1, and a dashpot describing dissipation mechanisms such as
viscous shear flow of the liquid between bubbles (Buzza et al 1995, Hemar et al 1995). These
hypotheses lead to a characteristic relaxation time tb ∝ ηR2

1/(T e) where e is the thickness of
films (Durian 1995, 1997). For a wet foam, with R1 = 30 µm, T = 30 mN m−1, e = 1 µm
and η equal to the viscosity of water, one obtains tb ≈ 10−5 s. Since this is orders of magnitude
faster than the experimental timescale of typical rheological experiments, it has been suggested
that collective rather than individual bubble relaxations could explain the viscoelastic response
discussed above (Durian 1997). Liu et al have proposed that a disordered bubble or droplet
packing may be described as an elastic matrix in which weak regions are randomly dispersed.
In these regions, layers of bubbles may slip against each other along randomly oriented planes
if the foam is subjected to a small strain (Liu et al 1996). Similar behaviour has indeed
been observed in numerical simulations of disordered 2D foam (Langer and Liu 1997). The
viscoelastic relaxation time in a weak region depends not only on the viscous drag of the
sliding bubble layers and the elasticity of the surrounding foam but also on the orientation of
the weak plane with respect to the applied shear. Random distribution of orientations leads to
a distribution of relaxation times such that the experimentally observed scaling G ′′ ∝ ω1/2 is
obtained (Liu et al 1996). Let us note that processes at the scale of the gas–liquid interfaces
may also contribute to the fast viscoelastic relaxations (Buzza et al 1995). Furthermore, in
simulations of 2D foams confined between solid plates, a relatively fast relaxation related to
viscous friction of bubbles on the walls has been evidenced (Cox 2005). It is superposed on a
coarsening induced relaxation which is generally very slow, as discussed above.

Evolution of the viscoelastic behaviour upon coarsening. If drainage and coalescence are
negligible on the experimental timescale, the coarsening process leads to a scaling state where
the average bubble size R1(t) grows following a parabolic law (cf equation (1)). Experiments
for wet foam have shown that the following empirical scaling law captures the evolution of the
complex shear modulus under these conditions (Cohen-Addad et al 1998):

G∗(ω, t) = b(t)G∗(ωa(t), t0). (6)

The scaling factors a(t) and b(t) are by definition equal to one at the arbitrary reference time t0.
This law allows the data of figure 6 to be collapsed onto the two master curves shown in figure 9.
To check the validity of equation (6) on very long timescales, the measured creep compliance
J (t) of wet foams described by equation (5) can be converted to complex shear modulus data
at very low frequency using the relation G∗(ω) = 1/(iωL[J (t)][iω]) which is of general
validity in linear viscoelasticity (Ferry 1980) and where L denotes the Laplace transform.



R1054 Topical Review

10

100

1000

0.01 0.1 1 10 100

S
ca

le
d

sh
ea

r
m

od
ul

i
(P

a)

Scaled storage modulus

Scaled loss modulus

Scaled frequency (Hz)

1/2

(a)

10-1

100

101 102 103

b(
t)

,R
1(t

o)/
R

1(t
)

Foam age t (min)

(b)

100

101

100 101 102 103

a(
t)

,
τ o(t

)/
τ o(t

o)

Foam age t (min)

(c)

Figure 9. (a) Scaled shear moduli G∗(ω, t)/b(t) versus scaled frequency ωa(t), obtained from
the data of figure 6 for different foam ages t . The straight line represents a power law of exponent
1/2, fitted to the data for scaled frequencies above 2 Hz. The age t0 = 15 min is taken as a
reference. (Reprinted figure, with permission from Cohen-Addad et al (1998), Copyright 1998
by the American Physical Society.) (b) Temporal evolution of the modulus scaling factor b(t):
(•) from oscillatory data (equation (6)), (◦) from creep data (equation (7)), compared to (×) the
temporal evolution of 1/R1(t) (Cohen-Addad and Höhler 2004). The continuous line represents
a fit of the inverse of a parabolic law (cf equation (1)) to the b(t) data. (c) ( ) Frequency scaling
factor a(t) and (+) average time interval between coarsening induced bubble rearrangements at
a given place, denoted as τ0(t), versus foam age. The latter data, measured by diffusing-wave
spectroscopy, are normalized by their value at t0 = 15 min (Cohen-Addad and Höhler 2001).

The expression obtained may be simplified by noting that J1 � J0 and by expanding G∗ to
first order in J1/J0:

G∗(ω, t) ∼= 1

J0

(
iωη0 J0

1 + iωη0 J0
− J1

J0

(ωη0 J0)
2

(−i + ωη0 J0)2

)
. (7)

This result is indeed compatible with equation (6) and by comparing these two equations the
dimensionless scaling functions a(t), b(t) are found to vary with foam age respectively as
J0η0 and 1/J0. Remarkably, b(t) extracted from creep data fully agrees with b(t) obtained
from oscillatory measurements (Cohen-Addad and Höhler 2004): it decreases with foam age
as the inverse of the mean bubble radius (cf figure 9(b)), in agreement with the prediction of
equation (4). Note that since in the scaling state there is only a single independent characteristic
length scale, the Sauter mean radius R32 must increase in proportion to R1.

The evolution of a(t) with foam age shown in figure 9(c) indicates that coarsening also
affects the timescales of viscoelastic relaxation processes. According to the mesoscopic model
of creep outlined above and ignoring the high frequency contribution, J0η0 scales with foam
age as the average time interval between coarsening induced bubble rearrangements at a given
place in the foam, denoted as τ0. This is consistent with figure 8(b) since J1 � J0. The
relation a(t) ∝ J0η0 obtained in the discussion following equation (7) implies that a(t) must
also scale with foam age as τ0, in agreement with the data shown in figure 9(c): a(t) follows
asymptotically a power law, very similar to the one describing the evolution with foam age of
τ0, measured by diffusing-wave spectroscopy (Cohen-Addad and Höhler 2001).



Topical Review R1055

N1 = σ11 − σ 22

N2 = σ 22 − σ 33

X3

X1

X2

Figure 10. Definition of the first and second normal stress differences N1 and N2 induced by a
shear σ12.

3.2. Non-linear elasticity

In this section, we will discuss the rheological response of foams and concentrated emulsions in
a regime of strains γ small enough to avoid yielding but large enough for deviations from linear
elastic response to be significant. In isotropic elastic solids, the leading non-linear corrections
to the linear shear modulus must for reasons of symmetry be of order γ 2, so corrections of the
shear stress of order γ 3 are expected. A shear strain also induces stresses perpendicular to the
direction of the shear, characterized by the first and second normal stress differences, denoted
as N1 and N2 as illustrated in figure 10 (Macosko 1994). Again for reasons of symmetry, these
normal stress differences are expected to be of order γ 2 and therefore represent the strongest
non-linear elastic effect for small strains (Mal and Singh 1991). Let us point out that uniaxial
strain may also lead to normal stress differences which are however to leading order a linear
elastic effect. Recent reports of elastic normal stress differences in complex 2D flows fall into
this latter category (Asipauskas et al 2003).

For any isotropic elastic solid whose mechanical energy is a well defined single-valued
function of the instantaneous elastic strain, the shear induced first normal stress difference is
intrinsically linked to the shear stress σ12 and shear strain γ . We will refer to this fact as the
Poynting relation (Mal and Singh 1991, Poynting 1909):

N1 = σ12γ. (8)

The second normal stress difference is not constrained by such a fundamental relation and
depends on the physicochemical nature of the material. The first theoretical studies of non-
linear elastic response in foams and emulsions concerned 2D model systems (Khan and
Armstrong 1986, Princen 1983). Later, N1 and N2 in dry 3D ordered foams (Reinelt 1993,
Reinelt and Kraynik 1993) and disordered foams (Kraynik and Reinelt 2004, Kraynik et al
2000) were studied. In these 3D studies, the second normal stress difference in foams and
emulsions was found to be negative and in absolute value comparable to N1, in contrast to
the case for many other complex fluids such as polymers. To be able to predict the non-linear
elastic response for arbitrary strains, a tensorial non-linear constitutive law is required. On the
basis of a description of foam as an ensemble of film interface elements whose distribution of
orientations is given by f (n) (cf section 2.2), Doi and Otha established such a relation (Doi
and Ohta 1991)2:

σ = −pI + T
∫ ∫

4π

(I − n ⊗ n) f (n) d�, f (n) = Q0

4π

[det(F)]2

|FTn|4 . (9)

Q0 is the interfacial area per unit volume in the absence of strain and F the deformation
gradient tensor describing the applied strain (cf equation (3)) which is considered to be affine.

2 In their paper, these authors separate the isotropic and deviatoric parts of σ , in contrast to the approach of equation (9).
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The macroscopic pressure p is an average over the gas pressures in the bubbles (cf equation (2)).
The integral in equation (9) must in general be evaluated numerically; only for simple shear
and uniaxial strains have approximate analytical solutions been worked out. Moreover, using
a pre-averaging approximation, the following analytical constitutive law has been derived on
the basis of a description of foam as an ensemble of film interface elements (Larson 1997):

σ = −pI − 2G
√

B−1. (10)

To make further progress we recall that the constitutive law for an incompressible isotropic
material can always be cast in the following form (Mal and Singh 1991):

σ = β0I + β1B + β−1B−1. (11)

The scalar quantities β0, β−1 and β1 are material functions depending on the invariants of the
deformation tensor B. β0 is dominated by the average gas pressure p, but also contains a small
interfacial contribution. For small strains, β−1 and β1 may be approximated as constants,
yielding an equation of the Mooney–Rivlin type (Macosko 1994). To determine the material
functions, one has to study the dependence of the interfacial energy per foam volume W on
strain induced changes of the interface element areas. For affine strain, such an expression can
be established using the right Cauchy Green tensor C introduced in section 2.2 (Höhler et al
2004):

W (C) = T a

V

∑

j

√
|C|n j C−1n j . (12)

The sum is over all interface elements. Their unit normal vectors are denoted as n j and before
the strain is applied, all of them have an area denoted as a. The material functions can be
obtained from W (C) using the general formalism of continuum mechanics (Mal and Singh
1991). Recently, a simple and accurate analytical approximation of the resulting complex
constitutive law has been derived (Höhler et al 2004):

W = G

14
((IB − 3) + 6(IIB − 3)) σ = −pI +

G

7
(B − 6B−1). (13)

G is the linear shear modulus and IB and IIB are respectively the first and second invariants
of B. These equations are in good agreement with the exact theoretical results for affine
simple shear and uniaxial strain up to strain of the order of a typical yield strain in foams.
Moreover, equation (13) predicts N2/N1

∼= −6/7, in good agreement with quasistatic
numerical simulations of sheared foams using the Surface Evolver (Kraynik and Reinelt 2004,
Kraynik et al 2000).

4. Yielding

4.1. Experimental evidence for yielding and jamming

Many different experiments have been used to probe the passage from solid-like to liquid-
like mechanical behaviour, called yielding. The maximum constant applied shear stress for
which a sample will not flow defines a yield stress on the macroscopic scale (Larson 1999);
the corresponding strain defines a yield strain. The yield stress can be deduced from the
maximum stress in a shear start-up experiment with a constant strain rate (Khan et al 1988),
by applying constant stresses (cf section 5.2), by studying the flow of foam on a inclined
plane (Rouyer et al 2005) or by measuring the rheological response to an imposed oscillating
stress or strain as a function of amplitude (Rouyer et al 2005, Saint-Jalmes and Durian 1999).
This latter approach has the advantage that the maximum strain or stress and the characteristic
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experimental timescale, set by the frequency, can be varied independently. Yielding appears
as the passage from a predominantly elastic regime where G ′ > G ′′ towards predominantly
viscous or plastic behaviour where G ′ < G ′′ (Larson 1999), observed for increasing strain
or stress amplitudes. To obtain a convenient quantitative yield criterion, several authors have
plotted stress amplitude as a function of strain amplitude (Mason et al 1996, Saint-Jalmes and
Durian 1999): in the liquid-like and solid-like regimes, power laws with different exponents
are observed whose intersection defines a characteristic stress. An analogous procedure based
on a plot of G ′ versus stress amplitude gives the same value for a wet foam (Rouyer et al
2005), suggesting that the oscillatory yield stress obtained in such experiments is a robust
quantity.

On the scale of the bubbles, yielding induced by applying macroscopic stress or strain may
be defined as the onset of structural rearrangements, that modify the topology of the bubble
packing and that persist if all macroscopic stress is released. Upon such rearrangements the
areas of some films shrink to zero and new films are created. Viscous forces are opposed to
these evolutions and thus retard the irreversible topological changes. Yielding is therefore
expected to appear at strains that are an increasing function of strain rate in a shear start-up
experiment. This feature has been predicted theoretically in 2D models of dry foam where
viscous bulk liquid flow in the films was taken to be the dominant mechanism of dissipation
(Khan and Armstrong 1987, Kraynik and Hansen 1987). Numerical results published in the
latter of these papers may be described by the empirical relation:

γc = γc,0 + ACa′ (14)

where γc is the strain where rearrangements set in and γc,0 is the value of this parameter in the
quasistatic limit. Ca′ = √

3µ�(1 − φ)γ̇ /(4T ) is a modified capillary number, µ is the liquid
viscosity, � the initial length of a bubble edge and A a fitted parameter. The predicted evolution
of γc with capillary number was not detected in early shear start-up experiments (Khan et al
1988), due to the restricted range of strain rates explored. However, the dependence of yielding
on strain rate has recently been evidenced by observing the structure in the bulk of a dry 3D
foam upon shear start-up (Rouyer et al 2003). Shear induced rearrangements were found
to occur at random positions in the probed volume, and these observations allowed one to
deduce, as a function of strain and strain rate, the rearrangement probability per unit volume.
The strain where this parameter rises beyond the limit of detection is identified with γc and
represented in figure 11 as a function of strain rate. Beyond γ̇ ∼= 0.1 s−1, the increase of
γc with strain rate indicates the presence of significant viscous forces, whereas the plateau at
low strain rates strongly suggests a quasistatic regime. Let us however note that for strain
rates below those shown in figure 11, coarsening induced rearrangements need to be taken
into account. We have shown in section 3.1 that they lead to a slow creep or relaxation flow
even for stresses and strains much too small to induce yielding. Only if the experimental
timescale is sufficiently short will these phenomena be negligible and may quasistatic yielding
be defined approximately. The data shown in figure 11 agree with the functional form of
equation (14), but the parameter A is several orders magnitude larger than the theoretically
predicted value, suggesting that viscous bulk liquid flow upon stretching of the films is not
the dominant dissipation mechanism. Viscous flow in the vicinity of the Plateau borders or
interfacial viscoelastic effects may play an important role in this context.

The passage from liquid-like towards solid-like behaviour, called jamming (Cipelletti and
Ramos 2002, Liu and Nagel 1998), may be considered as the opposite of yielding. It can be
studied by shearing the sample at slowly decreasing strain rates and measuring the stress. The
extrapolation of these data to zero shear rate defines a dynamic yield stress. Such measurements
are non-trivial since stress continues evolving significantly with strain rate even at very small
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Figure 11. The strain at which shear induced rearrangements set in for a shear start-up experiment
is plotted as a function of strain rate. The symbols indicate the gap width as follows: (◦) 11.5 mm,
(•) 16.0 mm. The gas volume fraction of the foam studied is larger than 99%. (Reprinted figure
with permission from Rouyer et al (2003), Copyright 2003 by the American Physical Society.)

rates and also due to shear banding as explained in section 5.1. Figure 12 gives an overview of
experimental yield stress data for foams and emulsions obtained using various experimental
techniques over a large range of gas volume fractions. The yield stress τy is normalized by
surface tension divided by a mean bubble radius R1. This scaling, suggested by dimensional
arguments, is widely used in the literature, despite a previous prediction that τy should scale
as the inverse of the Sauter mean radius (Princen 1985). In all of the experiments considered,
the effect of wall slip has been carefully taken into account or eliminated by roughening the
surfaces in contact with the sample. The oscillatory yield stresses reported for foams and
emulsions are in rough agreement and may be described by the following relation where β is
a dimensionless factor close to 0.5 (cf figure 12):

τy = β
T

R1
(φ − φc)

2. (15)

In experiments with monodispersed emulsions, the dynamic yield stress was found to agree with
the oscillatory yield stress for effective dispersed volume fractions �0.7 where the flow was
homogeneous. However, at larger volume fractions where shear banding was observed, strong
disagreement between the two types of yield stress was found (Mason et al 1996). The exact
conditions under which heterogeneous flow develops are not yet well understood (cf section 5.1)
and several authors have reported good agreement between dynamic and quasistatic yield
stresses for polydispersed foams and polydispersed emulsions, even at dispersed volume
fractions well beyond 0.7 (Khan et al 1988, Yoshimura et al 1987). Under oscillatory shear,
heterogeneous flow has been reported to occur only at stresses clearly above the oscillatory
yield stress (Rouyer et al 2005). Comparing experimental yield stress data with numerical
simulations of totally dry random foam is non-trivial since for φ > 0.97 a sharp rise of τy

with φ has been reported that is not described by the empirical law of equation (15) (Gardiner
et al 1998b). This feature may partly explain the discrepancy between the experimental data
and Surface Evolver simulations of disordered dry 3D foams. Moreover, simulations using
the bubble model suggest that the static yield stress strongly decreases with polydispersity
(Gardiner et al 2000).
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Figure 12. Yield stress data, normalized by interfacial tension divided by the mean bubble or
effective droplet radius, obtained for foams and emulsions in a regime of low frequencies or shear
rates, versus volume fraction of the dispersed phase. All data are experimental, except for a single
point obtained by a numerical simulation. Oscillatory and dynamic yield stress data are identified
in the inset. For the data reported by Princen et al and Yoshimura et al, the mean radius is R32,
while in all other cases it is R1.

The complex experimental evidence shown in figure 12 suggests that parameters other
than volume fraction, average radius and surface tension must have an influence on the yield
stress and strain: experimental timescale, polydispersity, strain history and flow heterogeneity
can be important. A recent study has shown that the impacts of these features on yield stress
and elasticity are highly correlated: when normalized by the shear modulus, oscillatory shear
stress data as a function of dispersed volume fraction obtained by various authors collapse
onto a master curve (Rouyer et al 2005). Further experimental work with rigorous control of
the flow field as well as well as numerical simulations may help to clarify this issue.

4.2. Memory effects

In this section, we will discuss the dependence of foam structure and rheology on strain history.
Numerical simulations (Weaire et al 1992) as well as 2D experiments with bubble rafts covered
by a glass plate (Kader and Earnshaw 1999) have shown that the topological statistics of a
random foam structure are modified when it is sheared beyond the yield strain: the second
central moment of the distribution of bubble coordination numbers, generally denoted as µ2,
is found to decrease with strain. These results differ from observations of bubble rafts with a
free surface sheared in a Couette cell where no strain induced variation of µ2 was observed
(Dennin and Knobler 1997). Moreover, a change of bubble coordination number should
modify the coarsening dynamics (Hilgenfeldt et al 2001b), but comparison of bubble growth
in quiescent and flowing 3D foams did not reveal any such effect (Gopal and Durian 1995).
Recent 3D bubble model simulations offer a possible explanation for the lack of a robust generic
behaviour: the strain dependence of µ2 is reported to depend on the strain rate and disorder as
well as polydispersity (Gardiner et al 2000). Strain history also plays an important role in the
dynamics of yielding and jamming. These features have been compared to the behaviour found
for glassy materials by describing the agitation induced by flow in terms of an effective noise
temperature (Liu and Nagel 1998, Sollich et al 1997). In this framework, the SGR model
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presented in section 2.2 makes the following predictions: a system abruptly brought from
high to low effective noise temperature will initially contain quenched regions of high energy
that slowly relax towards a lower energy structure. The initial high energy configuration
may subsequently be regenerated by applying a transient flow, a phenomenon called shear
rejuvenation. Following such a flow, the rate of structural rearrangements is temporarily
enhanced and then relaxes to its previous value. These rearrangements reduce temporarily
the system’s ability to store elastic energy and, therefore, the shear modulus should present a
characteristic transient softening. Such behaviour has indeed been found experimentally for
various colloidal pastes (Cloitre et al 2000, Derec et al 2003, Ozon et al 2003). For specific
strain histories involving two distinct oscillatory shear strains, the rearrangement dynamics
has been found to be accelerated at short waiting times after the shearing but slowed down at
long waiting times. This phenomenon is called overageing (Viasnoff and Lequeux 2002).

The existence of shear rejuvenation and strain induced transient softening has been tested
experimentally for stable foams: oscillatory measurements of the linear elastic shear modulus
G ′ showed that after a transient flow, G ′ is indeed temporarily reduced and subsequently relaxes
to the value obtained for quiescent foam of the same age (Höhler et al 1999). In situ diffuse
transmission spectroscopy measurements showed that the mean bubble radius is not affected by
the flow. The characteristic time necessary to recover the elasticity of quiescent foam was found
to increase with the foam age at which the transient flow is applied, and to scale as the average
time between coarsening induced bubble rearrangements measured at this age by diffusing-
wave spectroscopy. This strongly suggests that the coarsening dynamics sets the timescale of
the observed rheological memory effect. Furthermore, the bubble dynamics accompanying
the elastic memory effect was studied by multispeckle diffusing-wave spectroscopy (Cohen-
Addad and Höhler 2001). Remarkably, a transient shear flow was found to decrease the bubble
rearrangement rate strongly, which is the opposite of the effect found in pastes and expected
according to the analogy with glasses. In contrast to the overageing behaviour outlined above,
a slowing down of the dynamics was detected in foams directly after the end of the transient
flow. The rearrangement rate was found to relax to the value found for quiescent foams of
the same age after a characteristic time denoted as TR that increases with foam age and with
the amplitude of the applied shear, as shown in figure 13. Manifestly, TR scales linearly with
foam age and strain amplitude, but it saturates above an amplitude that coincides with the
crossover to liquid-like behaviour detected by macroscopic rheometry (cf figure 13(c)). This
behaviour was explained by a schematic variant of the SGR model where the glassy dynamics
governed by a noise temperature is replaced by a coarsening dynamics, driven by the diffusive
gas exchange between neighbouring bubbles (Cohen-Addad and Höhler 2001). We conclude
that foams are not soft glassy materials in the sense of the generic SGR model, but that a
variant of this model taking into account the coarsening dynamics and other features specific
to foams may well provide a framework for a future constitutive law, linking the bubble
dynamics and macroscopic rheology. Let us finally note that both yielding and jamming
have been evidenced in stress cycling experiments where strong hysteretic effects have been
detected, again demonstrating the importance of strain history (DaCruz et al 2002, Rouyer
et al 2003).

5. Liquid-like response

5.1. Homogeneous flow and flow induced structures

Introduction. Subjected to a steady shear stress τ beyond the yield limit τy , foams and
concentrated emulsions present a rich variety of flow phenomena that are not yet fully
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Figure 13. Time TR necessary for rearrangement dynamics to recover after a transient oscillatory
shear flow of strain amplitude γ , applied at a foam age tp . The sample is Gillette foam with gas
volume fraction 0.92. In (a), tp is respectively equal to 10 min (diamonds) and 20 min (crosses).
In (b) data with tp = 40 min (triangles) and 80 min (discs) are shown. The straight lines represent
linear fits. The inset in (b) shows the dependence of the corresponding slopes on foam age with
a straight line indicating a linear fit for tp � 20 min. (c) shows the dependence of G ′ and G ′′ on
the strain amplitude for the same foam, measured at a frequency identical to that of the transient
oscillatory flow. (Parts (a) and (b) reprinted with permission from Cohen-Addad and Höhler (2001),
Copyright 2001 by the American Physical Society.)

understood. On a macroscopic scale, steady flow behaviour is often described by an effective
viscosity ηeff , defined as the ratio of shear stress to the effective shear strain rate γ̇ , deduced
from the motion of the sample boundaries. Let us note that in the presence of wall slip or if the
shear rate changes across the gap, γ̇ must be distinguished from the local strain rate in the foam
γ̇local, defined at a length scale smaller than the sample size but much larger than the bubbles
(cf section 2.2). Experiments on 3D foams and emulsions (Gopal and Durian 1999, Khan et al
1988, Mason et al 1996, Princen and Kiss 1989) show that over a large range of shear rates
ηeff is many orders of magnitude larger than the viscosity of the continuous phase. This is a
consequence of the yield stress, whose origin at the bubble scale was discussed in section 2.2.
The measured flow curves τ (γ̇ ) are often fitted using the phenomenological Herschel–Bulkley
law (Larson 1999) where ξ and n are empirical parameters:

γ̇ = 0 for τ < τy

τ = τy + ξ γ̇ n for τ � τy.
(16)

Note that for n = 1, this expression reduces to the Bingham law. A relationship of the form
of equation (16) with n = 2/3 has been predicted theoretically, on the basis of an analysis of
viscous dissipation in the neighbourhood of the Plateau borders (Schwartz and Princen 1987).
Flow behaviour that may be described by equation (16) is also predicted by the SGR model
(Sollich 1998) (cf section 2.2) as well as by 2D and 3D numerical bubble model simulations
(Durian 1995, Gardiner et al 2000). Several authors have fitted experimental data for foams
and emulsions over a wide range of effective shear rates using the Herschel–Bulkley law
with n ranging from 0.25 to 1 (Denkov et al 2005, Gopal and Durian 1999, Khan et al 1988,
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Figure 14. (a) Velocity profile in a polydisperse emulsion, flowing in the gap of a cone plate
rheometer (figure reprinted with permission from Coussot et al (2002b), Copyright 2002 by the
American Physical Society). (b) Normalized velocity profile of foam undergoing steady shear flow
in a sliding plate rheometer. d is the gap width and V the velocity of the mobile plate with respect
to the fixed plate. The symbols correspond to experiments made with nominally identical samples
for different values of d and V . The fluctuations of the profile were found to be statistical and
do not present any systematic variations with d and V in the range explored. The dashed straight
line represents the velocity profile expected for a uniform strain rate. At the beginning of the
shear start-up flow the normalized velocity data remain close to this line. (Figure modified with
permission from Rouyer et al (2003), Copyright 2003 by the American Physical Society.)

Princen and Kiss 1989). However, flow behaviour can be more complex, as first pointed out
by Mason et al (1996). In the following, we present several recent rheological experiments
on 3D foams and emulsions showing that the Herschel–Bulkley law does not capture all of
the physics that governs the flow of these materials: at low strain rates, liquid-like and solid-
like regions can coexist in the same sample, even under homogeneous stress. Many recent
theoretical publications propose interpretations of such heterogeneous flow or shear banding
in complex fluids in terms of flow curves where stress does not increase monotonically with
local strain rate, as discussed in a recent review (Ajdari 2002).

Flow under homogeneous stress. Few direct observations of the local velocity field in
foams or concentrated emulsions flowing under homogeneous applied shear stress have been
published: a MRI study of an emulsion, steadily sheared in a cone and plate geometry, has
shown coexisting liquid-like and solid-like regions (Coussot et al 2002b). These data, shown
in figure 14(a), indicate that the width of the solid-like region decreases with increasing
cone rotation velocity and thus with effective strain rate, so homogeneous flow may occur
for sufficiently high strain rates. Moreover, the velocity field of bubbles in the bulk of a
dry 3D foam upon shear start-up in a sliding plate geometry was observed by an optical
imaging technique (Rouyer et al 2003). The macroscopic deformation remained to a good
approximation homogeneous up to strains typically one order of magnitude larger than the yield
strain, because bubble rearrangements were localized and randomly distributed throughout
the gap. At larger strains, the bubble velocity profile became non-linear and fluctuating as
illustrated in figure 14(b), which can be interpreted as the onset of shear banding. Evidence
for heterogeneous flow under simple shear was also found in quasistatic Surface Evolver
simulations of ordered dry 3D foam (Reinelt and Kraynik 2000) and disordered dry 2D foam
(Kabla and Debregeas 2003), but not in simulations of disordered foams using the bubble
model (Durian 1995, 1997, Gardiner et al 2000).
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Flow under heterogeneous stress. Several experimental studies of foam flow have been
performed using the cylindrical Couette geometry, in which shear stress varies under stationary
conditions as τrθ(r) ∝ 1/r2 where r is the distance from the axis of symmetry (Macosko 1994).
For a complex fluid with yield stress τy and a shear rate low enough for viscous forces to be
small, this implies that the local strain rate must be zero in the sample except in a region
close to the inner cylinder. Note that such behaviour induced by stress heterogeneity must be
distinguished from shear banding that appears spontaneously under homogeneous shear stress
(as in figure 14).

We will now discuss experimental data obtained with a 3D cylindrical Couette geometry.
The velocity field in monodispersed emulsions upon shear start-up has been visualized by
painting a black stripe on the free sample surface (Mason et al 1996). For volume fractions
φ > 0.7, the formation of a sharply localized shear band was observed. It does not appear
to result from stress heterogeneity since it was randomly located in the gap. Remarkably,
the flow for volume fractions φ < 0.7 was found to be homogeneous in these experiments,
suggesting that shear banding may not be a universal feature of any flowing emulsion. The
velocity profiles in steadily flowing emulsions and foams with φ > 0.7 have been studied by
MRI (Bertola et al 2003, Coussot et al 2002b, Rodts et al 2005) and by dynamic light scattering
(Becu et al 2005, Salmon et al 2003). These data differ from those reported for shear start-up
in that no sharply localized shear band is observed, in qualitative agreement with a multiple
light scattering study of 3D foam of gas volume fraction 0.92 that steadily flows in a Couette
geometry (Gopal and Durian 1999). The following constitutive equation was found to describe
the relation between stress and the local strain rate in an emulsion and a foam steadily sheared
in a wide gap Couette geometry (Coussot et al 2002b, Rodts et al 2005):

γ̇local = 0 for τ < τc

τ = τc(γ̇local/γ̇c)
m for τ � τc.

(17)

The fitted parameter m was in the range 0.2–0.3. τc is a critical stress, existing at the
interface between flowing and solid-like regions, and γ̇c is a critical local shear rate below
which steady flow is reported to be impossible. For γ̇local � γ̇c, power law fluid behaviour is
predicted throughout the sample. If γ̇ < γ̇c, the effective macroscopic behaviour is controlled
by a balance of coexisting liquid-like and solid-like phases. The cited MRI data present a
discontinuous jump of γ̇local as a function of the radial coordinate, at the boundary between
flowing and solid-like regions, in agreement with equation (17) but in contradiction with the
Herschel–Bulkley law. Further evidence has been obtained using dynamic light scattering
measurements of the velocity field in a monodispersed emulsion, steadily sheared in a Couette
cell (Salmon et al 2003). These data could only be fitted to equation (17) if the model parameters
were allowed to depend on stress.

Several flow velocity field measurements have been carried out in the 2D cylindrical
Couette geometry. The samples were either bubble monolayers confined between the glass
plates of a Hele–Shaw cell (Debregeas et al 2001) or bubble rafts floating on a liquid (Lauridsen
et al 2002). In the limit of very slow steady shear where viscous interactions may be expected
to be insignificant, the flow behaviours observed in these two experiments differ: in the Hele–
Shaw cell experiment, the average tangential bubble velocity was found to drop exponentially
to zero with distance from the inner sample boundary, on the scale of a few bubble diameters
(Debregeas et al 2001), whereas bubble motion throughout the bulk of the system was reported
in bubble raft shear experiments (Lauridsen et al 2002). Moreover, the macroscopic flow
curve obtained in the latter measurements over a wide range of strain rates could be fitted
approximately by the Herschel–Bulkley model with exponent 1/3 (Pratt and Dennin 2003).
Recently, a discontinuous variation of strain rate with radius at the interface between flowing
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Figure 15. Effective shear rate versus time, obtained for foam (Gillette shaving cream) subjected
to a step stress. Note that an increase of the imposed stress of less than 3% changes the shear rate
at long times by several orders of magnitude. (Figure reprinted with permission from DaCruz et al
(2002), Copyright 2002 by the American Physical Society.)

and solid-like regions of the bubble raft has been detected in such experiments at very low
effective shear rates, in qualitative agreement with equation (17) (Lauridsen et al 2004). Other
recent studies of dissipation in flowing 2D foam concern the viscous drag on a cylindrical
obstacle (Dollet et al 2005) or flow through a constriction (Asipauskas et al 2003).

More experimental and theoretical work is needed to understand quantitatively all aspects
of the steady flow of foams and emulsions. Realistic descriptions of viscous and elastic bubble
interactions, shear flow induced bubble segregation according to size (Herzhaft 2002, Quilliet
et al 2005), dilatancy (defined in this context as the migration of the liquid content driven by
heterogeneous stress) (Marze et al 2005, Rioual et al 2005, Weaire and Hutzler 2003) and
shear induced bubble rupture (Mason and Rai 2003) may have to be considered.

5.2. Thixotropy and viscosity bifurcation

Figure 15 shows the time evolution of the effective strain rate in foam subjected to a step shear
stress of amplitude τ . Such flow induced time evolution of the effective viscosity is called
thixotropy (Macosko 1994). Note that the experimental timescale of these experiments is
sufficiently short for the ageing processes presented in section 2.1 to be negligible. For τ < τy ,
the strain rate progressively decreases, whereas for τ > τy , it increases and converges to a
steady state value. Remarkably, the effective viscosity at long times varies discontinuously
as a function of the applied constant stress τ at τ = τy: this behaviour, called viscosity
bifurcation (DaCruz et al 2002), is incompatible with the Herschel–Bulkley law which predicts
a continuous divergence of the effective viscosity as a function of τ in the vicinity of τ = τy .
The bifurcation under steady state conditions is described at least qualitatively by equation (17).

5.3. Flow dynamics on the bubble scale

Steady flow of 3D foams. The steady flow dynamics of 3D foam on the bubble scale has
been studied experimentally in samples with 0.92 gas volume fraction, using diffusing-wave
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spectroscopy, a non-invasive multiple light scattering technique (Earnshaw and Wilson 1995,
Gopal and Durian 1995, 1999). These data did not provide any evidence for marked strain
localization effects. As a function of strain rate γ̇ , yield strain γy and typical duration of a
rearrangement τd , three regimes of different local dynamics have been identified and explained
at least schematically (Gopal and Durian 1999): for γ̇ well above γy/τd , the DWS data indicate
a continuous flow with a convective laminar profile. Indeed, under these conditions new
rearrangements are expected to be triggered before the preceding ones are finished. For strain
rates well below γy/τd , macroscopic flow is accomplished by intermittent rearrangements of
small bubble clusters, occurring at a rate γ̇ /γy . This is consistent with a schematic model
where the local strain continuously builds up at a rate γ̇ and is reset to zero whenever it reaches
γy . At very low strain rates, the rate of coarsening induced rearrangements at a given place in
the sample, denoted as 1/τ0, exceeds that of strain induced rearrangements. A crossover to this
latter regime is expected and observed for γ̇ = γy/τ0. Remarkably, the reported dependence
of the effective viscosity on γ̇ does not present any marked features at the crossover between
the different regimes discussed here (Gopal and Durian 1999). Numerical simulation studies
of bubble dynamics in flowing 3D foams have been carried out so far only for dry ordered
structures in the quasistatic regime, using the Surface Evolver software. Rearrangements
forming complex cascades were found to occur throughout the sample (Reinelt and Kraynik
2000).

Steady flow of 2D foams. Insight into the local dynamics in flowing 2D foams has been
obtained by experiments and numerical studies. The bubble model predicts the existence of a
well defined quasistatic shear flow regime where stress as well as number of rearrangements
per bubble and unit strain are independent of strain rate (Durian 1995, Tewari et al 1999), in
agreement with vertex model simulations (Okuzono and Kawasaki 1995), and observations
of bubble rafts sheared in a Couette geometry (Dennin and Knobler 1997, Pratt and Dennin
2003), but in contrast with a simulation using the Potts model (Jiang et al 1999). The event
size, defined as the number of bubbles participating in a rearrangement, has been reported
to be typically of the order of a few bubbles for dry foams (cf figure 16) but to increase on
average with the liquid volume fraction (Hutzler et al 1995, Tewari et al 1999). Moreover,
experimental studies of sheared bubble rafts have shown that the distribution of stress drops
upon events follow a power law with a cut-off (Lauridsen et al 2002). Such a law also describes
the distribution of elastic energy drops in bubble model simulations where the cut-off at large
energies was found to be independent of the system size for large dry systems (Durian 1997).
These consistent experimental and simulation results are in contrast to previous vertex model
simulations of dry foam where the energy drop distribution was reported to be limited by
the system size, suggesting self-organized critical behaviour (Okuzono and Kawasaki 1995).
However, in the wet limit, recent bubble model simulations have evidenced large, possibly
system-wide events (Tewari et al 1999). Another recently investigated feature of steadily
sheared foams is bubble velocity fluctuations. Studies using the bubble model have shown a
crossover from Gaussian fluctuations for γ̇ � γy/τd towards strong non-Gaussian fluctuations
governed by bubble rearrangement dynamics for γ̇ � γy/τd (Ono et al 2003). Experimental
studies of sheared bubble rafts have shown that velocity fluctuations vary with position across
the discontinuity in rate of strain mentioned in section 5.1 (Dennin 2005). Moreover, there is
strong evidence that an effective temperature may be a useful measure of velocity fluctuations
in this context (Langer and Liu 2000, Ono et al 2002). Several recent 2D studies have focused
on bubble dynamics in localized quasistatic flows (Cox et al 2004, Debregeas et al 2001,
Kabla and Debregeas 2003): in the heterogeneous stress field of a cylindrical Couette device,
strong fluctuations involving roll-like bubble motion were identified. Simple shear as well as
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Figure 16. Sequence of snapshots illustrating the nature and time evolution of a typical shear
induced bubble rearrangement in dry 2D foam, simulated using the bubble model. Bubbles
that change overlapping neighbours as the applied shear �γ increases are marked in grey. The
fourth frame shows the final configuration with bubbles in light grey superimposed on the initial
configuration with bubbles in black. (Figure reprinted with permission from Tewari et al (1999),
Copyright 1999 by the American Physical Society.)

cylindrical Couette Surface Evolver simulations evidenced spatial stress fluctuations related
to the formation of shear bands close to the sample boundary.

Some recent work focuses on 2D foam rheology beyond the quasistatic regime: a viscous
froth model has been developed in the framework of Surface Evolver simulations for describing
flow in Hele–Shaw cells where the viscous drag of the lamellae on the walls is taken into account
(Cox et al 2004, Kern et al 2004, Cox 2005). It has been applied to the study of microfluidic
devices, on the basis of ordered 2D foam flowing in channel geometries (Drenckhan et al
2005).

6. Conclusion and outlook

The work outlined in this review shows that liquid foam rheology is governed by processes
and properties on a large range of length scales. The rheology of the gas–liquid interfaces,
governed by processes on the molecular scale, as well as mesoscopic bubble rearrangements
have been shown to be of crucial importance for the macroscopic response. This interplay goes
beyond the models developed in pioneering studies of foam rheology, explaining the elastic
response in terms of average bubble radius, surface tension and gas volume fraction. The
experimental evidence shows that the slow linear viscoelastic relaxations of foams strongly
differ from those of glassy materials. However, the question remains of whether soft glassy
rheology models nevertheless capture the physics of foam jamming and yielding. Moreover,
it is not clear under what conditions foam flow is intrinsically heterogeneous. The vanishing
of static elasticity at increasing liquid fractions also raises open fundamental questions. Its
experimental study is difficult due to the strong drainage in very wet foams and may require
microgravity conditions. The coupling between rheology, drainage and coalescence is in itself
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an interesting and insufficiently explored topic. Further experiments and numerical studies
probing how local foam structure and dynamics are linked to the macroscopic rheological
behaviour will help to make progress towards a full theoretical understanding of liquid foam
rheology.
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Cohen-Addad S and Höhler R 2004 unpublished
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